首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38137篇
  免费   2997篇
  国内免费   2847篇
  2024年   16篇
  2023年   437篇
  2022年   525篇
  2021年   2087篇
  2020年   1355篇
  2019年   1711篇
  2018年   1722篇
  2017年   1175篇
  2016年   1644篇
  2015年   2402篇
  2014年   2830篇
  2013年   3080篇
  2012年   3576篇
  2011年   3165篇
  2010年   1987篇
  2009年   1617篇
  2008年   1969篇
  2007年   1720篇
  2006年   1586篇
  2005年   1285篇
  2004年   1052篇
  2003年   909篇
  2002年   758篇
  2001年   664篇
  2000年   588篇
  1999年   628篇
  1998年   351篇
  1997年   358篇
  1996年   336篇
  1995年   316篇
  1994年   332篇
  1993年   263篇
  1992年   311篇
  1991年   241篇
  1990年   213篇
  1989年   189篇
  1988年   127篇
  1987年   101篇
  1986年   92篇
  1985年   86篇
  1984年   59篇
  1983年   53篇
  1982年   34篇
  1981年   9篇
  1980年   9篇
  1979年   11篇
  1976年   1篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.  相似文献   
992.
A putative indigoidine biosynthetic gene cluster was located in the genome of Streptomyces chromofuscus ATCC 49982. The silent 9.4-kb gene cluster consists of five open reading frames, named orf1, Sc-indC, Sc-indA, Sc-indB, and orf2, respectively. Sc-IndC was functionally characterized as an indigoidine synthase through heterologous expression of the enzyme in both Streptomyces coelicolor CH999 and Escherichia coli BAP1. The yield of indigoidine in E. coli BAP1 reached 2.78 g/l under the optimized conditions. The predicted protein product of Sc-indB is unusual and much larger than any other reported IndB-like protein. The N-terminal portion of this enzyme resembles IdgB and the C-terminal portion is a hypothetical protein. Sc-IndA and/or Sc-IndB were co-expressed with Sc-IndC in E. coli BAP1, which demonstrated the involvement of Sc-IndB, but not Sc-IndA, in the biosynthetic pathway of indigoidine. The yield of indigoidine was dramatically increased by 41.4 % (3.93 g/l) when Sc-IndB was co-expressed with Sc-IndC in E. coli BAP1. Indigoidine is more stable at low temperatures.  相似文献   
993.
The lipase r27RCL from Rhizopus chinensis CCTCC M201021 was heterologously expressed in Pichia pastoris GS115 by simultaneous co-expression with two secretion factors ERO1p and PDI involved in the endoplasmic reticulum (ER). Compared to the expression of the lipase alone (12,500 U/ml), co-expression with these two proteins resulted in the production of larger total quantities of enzymes. The largest increase was seen when the combined ERO1p/PDI system was co-expressed, resulting in approximately 30 % higher enzyme yields (16,200 U/ml) than in the absence of co-expressed secretion factors. The extracellular protein concentration of the recombinant strain Co XY RCL-5 reached 9.39 g/l in the 7-l fermentor. Simultaneously, the fermentation time was also shortened by about 8 h compared to that of the control. The substrate-specific consumption rate (Qs) and the product-specific production rate (Qp) were both investigated in this research. In conclusion, the space–time yield was improved by co-expression with ERO1p and PDI. This is a potential strategy for high level expression of other heterologous proteins in P. pastoris.  相似文献   
994.
Most of the germplasm resources in Brassica juncea produce silique with only two locules, whereas a few varieties can produce silique with three or four locules. The increase in locule number in B. juncea has been shown to cause an increase in the number of seeds per silique, resulting in an increase in the yield per plant. Thus, the development of high-locule-number varieties may be an effective way of improving the yield of B. juncea. Duoshi, a B. juncea landrace originating from the Qinghai–Tibetan plateau, produces silique with 3–4 locules. Genetic analysis has shown that the high-locule-number trait in Duoshi is determined by two recessive genes, tentatively designated as Bjln1 and Bjln2. For fine mapping of the Bjln1 gene, a BC3 population was developed from the cross between Duoshi (multilocular parent) and Xinjie (bilocular parent). Using a combination of amplified fragment length polymorphism (AFLP) and bulked segregant analysis, only two AFLP markers linked to Bjln1 were identified. Preliminary linkage analysis showed that the two AFLP markers were located on the same side of Bjln1. Blast analysis revealed that the sequences of the two AFLP markers had homologues on Scaffold000019 at the bottom of B. rapa A7. Using the results of linkage analysis and BlastN searches, simple sequence repeat (SSR) markers were subsequently developed based on the sequence information from B. rapa A7. Seven SSR markers were eventually identified, of which ln 8 was co-segregated with Bjln1. ln 7 and ln 9, the closest flanking markers, were mapped at 2.0 and 0.4 cM distant from the Bjln1 gene, respectively. The SSR markers were cloned, sequenced and mapped on A7 of B. rapa (corresponding to J7 in the A genome of B. juncea). The two closest flanking markers, ln 7 and ln 9, were mapped within a 208-kb genomic region on B. rapa A7, in which the Bjln1 gene might be included. The present study may facilitate cloning of the Bjln1 gene as well as the selection process for developing multilocular varieties in B. juncea by marker-assisted selection and genetic engineering.  相似文献   
995.
Muskmelon (Cucumis melo L.) wilt caused by Fusarium oxysporum f. sp. melonis leads to severe economic losses. A bio-organic fertilizer (BIO) fortified with an antagonistic strain of Bacillus subtilis Y-IVI was used to control this disease. Pot experiments were carried out to investigate the efficacy and to elucidate biocontrol mechanisms for the disease. BIO significantly reduced the disease incidence. Population of F. oxysporum in plant shoots of the BIO treatment were about 1000-fold lower than the control. Population of Y-IVI remained high in muskmelon rhizosphere of the BIO treatment during the experiment. Concentration of antifungal lipopeptides, iturin A, in the BIO treatment was significantly higher than other treatments. Ten days after transplantation, the salicylic acid content in BIO-treated plant leaves was significantly higher than control. In conclusion, BIO effectively controlled muskmelon wilt, possibly because the antagonistic microbes effectively colonize the plant rhizosphere and shoots to preclude pathogen invasion. Furthermore, Y-IVI produces antifungal lipopeptides in the rhizosphere.  相似文献   
996.
Apoptosis is an important aspect of a number of biological processes, from embryogenesis to the stress–injury response. It plays a central role in balancing cell proliferation and tissue remodeling activity in many organisms. In the present study, apoptosis in 14 days post infection schistosomula was evaluated using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays and DAPI staining. Additionally, flow cytometry using the Annexin V-FITC/propidium iodide (PI) (Annexin V/PI) assay confirmed the percentage of early apoptotic, late apoptotic, and necrotic cells in 14 and 23 days post infection worms. Conserved Domain Database (CDD) BLAST analysis and alignment analysis of known schistosome proteins demonstrated the feasibility of detecting the activity of caspase-3 and -7 using the caspase-3/7 Glo analysis assay. Analysis of caspase-3 and -7 activities in schistosome demonstrated that both caspases were active in each developmental stage of Schistosoma japonicum, but was highest in the 14 days post infection schistosomula. Additionally, the caspase peptide inhibitor (Z-VAD-FMK) inhibited the caspase-3/7 activity at all developmental stages examined. Therefore, we hypothesized that two main signaling pathways are involved in apoptosis in S. japonicum, the caspase cascade and the mitochondrial-initiated pathway. We have constructed a model of these two pathways, including how they may interact and their biological outcomes. qRT-PCR analyses of the gene expression profiles of apoptosis-related genes supported our hypothesis of the relationship between the apoptotic pathway and parasite development. The data presented here demonstrates that apoptosis is an important biological process for the survival and development of the schistosome, and identifies potential novel therapeutic targets.  相似文献   
997.
Recently, genome-wide association studies (GWAS) have led to the discovery of hundreds of susceptibility loci that are associated with complex metabolic diseases, such as type 2 diabetes and hyperthyroidism. The majority of the susceptibility loci are common across different races or populations; while some of them show ethnicity-specific distribution. Though the abundant novel susceptibility loci identified by GWAS have provided insight into biology through the discovery of new genes or pathways that were previously not known, most of them are in introns and the associated variants cumulatively explain only a small fraction of total heritability. Here we reviewed the genetic studies on the metabolic disorders, mainly type 2 diabetes and hyperthyroidism, including candidate genes-based findings and more recently the GWAS discovery; we also included the clinical relevance of these novel loci and the gene-environmental interactions. Finally, we discussed the future direction about the genetic study on the exploring of the pathogenesis of the metabolic diseases.  相似文献   
998.
The aim of malignant glioma treatment is to inhibit tumor cell proliferation and induce tumor cell apoptosis. Remifentanil is a clinical anesthetic drug that can activate the N-methyl-D-aspartate (NMDA) receptor. NMDA receptor signaling activates glycogen synthase kinase-3β (GSK-3β). Discovered some 32 years ago, GSK-3β was only recently considered as a therapeutic target in cancer treatment. The purpose of this study was to assess whether remifentanil can induce the apoptosis of C6 cells through GSK-3β activation. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) was used to detect cell viability. Hoechst 33342 staining and flow cytometry were used to detect cell apoptosis. The effect of GSK-3β activation was detected using a GSK-3β activation assay kit and 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a potent and selective small molecule inhibitor of GSK-3β. The MTT assay indicated that remifentanil induced C6 cell death in a concentration- and time-dependent manner. Hoechst 33342 staining and flow cytometry showed that remifentanil significantly induced C6 cell apoptosis. The measurement of GSK-3β activation showed that remifentanil increased the cellular level of GSK-3β. All of these toxic effects can be attenuated by treatment with TDZD-8. These results suggest that remifentanil is able to induce C6 cell apoptosis through GSK-3β activation, which provides a basis for its potential use in the treatment of malignant gliomas.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号